56.7k views
3 votes
Find the angle between the given vectors. Round your answer, in degrees, to two decimal places. u=⟨2,−6⟩u=⟨2,−6⟩, v=⟨4,−7⟩

User Doris
by
5.6k points

1 Answer

3 votes

Answer:


\theta = 108.29

Explanation:

Given


u = <2,6>


v = <4,-7>

Required:

Calculate the angle between u and v

The angle
\theta is calculated as thus:


cos\theta = (u.v)/(|u|.|v|)

For a vector


A = <a,b>


A = a * b


cos\theta = (u.v)/(|u|.|v|) becomes


cos\theta = (<2,6>.<4,-7>)/(|u|.|v|)


cos\theta = (2*6+4*-7)/(|u|.|v|)


cos\theta = (12-28)/(|u|.|v|)


cos\theta = (-16)/(|u|.|v|)

For a vector


A = <a,b>


|A| = √(a^2 + b^2)

So;


|u| = √(2^2 + 6^2)


|u| = √(4 + 36)


|u| = √(40)


|v| = √(4^2+(-7)^2)


|v| = √(16+49)


|v| = √(65)

So:


cos\theta = (-16)/(|u|.|v|)


cos\theta = (-16)/(√(40)*√(65))


cos\theta = (-16)/(√(2600))


cos\theta = (-16)/(√(100*26))


cos\theta = (-16)/(10√(26))


cos\theta = (-8)/(5√(26))

Take arccos of both sides


\theta = cos^(-1)((-8)/(5√(26)))


\theta = cos^(-1)((-8)/(5 * 5.0990))


\theta = cos^(-1)((-8)/(25.495))


\theta = cos^(-1)(-0.31378701706)


\theta = 108.288386087


\theta = 108.29 (approximated)

User KenL
by
5.4k points