Solution :
The expression for the intensity of light is given by :
![$I=I_(max)\left((\sin (\pi a \sin \theta)/(\lambda))/((\pi a \sin \theta)/(\lambda) )\right)^2$](https://img.qammunity.org/2021/formulas/physics/college/eha1mvwumrpukgoic2pymakced6xkt9qaf.png)
For a small angle, θ
sin θ = tan θ
![$=(y)/(L)$](https://img.qammunity.org/2021/formulas/physics/college/u9bb4q3f5v08jrxtelitjndvz0b5vwq1om.png)
Therefore the above equation becomes,
![$I=I_(max)\left((\sin (\pi a y)/(\lambda L))/((\pi a y)/(\lambda L) )\right)^2 $](https://img.qammunity.org/2021/formulas/physics/college/i8vgkzne1kvibselibywrik4u5knxyww3w.png)
The given data is
λ = 546.1 nm
L = distance between the slit and the screen = 140 cm
= 1.40 m
a = width of the slit
=
![$0.50 * 10^(-3) \ m$](https://img.qammunity.org/2021/formulas/physics/college/ftgyh8td0runr3jirpvlodzshhwhz4jz1n.png)
Therefore,
![$I=I_(max)\left((\sin (\pi * 0.50 * 10^(-3) * 4.10 * 10^(-3))/(546.1 * 10^(-9) * 1.20))/((\pi * 0.50 * 10^(-3) * 4.10 * 10^(-3))/(546.1 * 10^(-9) * 1.20) )\right)^2 $](https://img.qammunity.org/2021/formulas/physics/college/hvksu7w5snsg0bwqddwrpq0im0lk48sxr7.png)
![$=\left((0.170)/(9.82)\right)^2$](https://img.qammunity.org/2021/formulas/physics/college/kjb9dobe2jwvepb1ku4b2gzeqyjjzosbyo.png)
![$= 2.89 * 10^(-4) \ I_(max)$](https://img.qammunity.org/2021/formulas/physics/college/njw9gzdgcg7f7nszcmilngldd7v1goz0hp.png)
Therefore the fractional intensity is
![$(I)/(I_(max))= 2.89 * 10^(-4) $](https://img.qammunity.org/2021/formulas/physics/college/635yxk5m0ssfedwewrbhp3ogp43jn5f5d3.png)