Given:
The function is
![f(x)=2x^4-4x^3+20x-100](https://img.qammunity.org/2021/formulas/mathematics/college/nnwuh8hocz838vhz0ygteo3et6b2ga3qmm.png)
To find:
The remainder if f(x) is divided by (x+11).
Solution:
According to the remainder theorem, if a function f(x) is divided by (x-c), then the remainder is f(c).
On comparing (x+11) and (x-c), we get c=-11.
Using remainder theorem, if a function f(x) is divided by (x+11), then the remainder is f(-11).
Putting x=-11 in the given function.
![f(-11)=2(-11)^4-4(-11)^3+20(-11)-100](https://img.qammunity.org/2021/formulas/mathematics/college/ettca5o5yxj1atbi6depkqjjxnlgn63yfu.png)
![f(-11)=29282+5324-220-100](https://img.qammunity.org/2021/formulas/mathematics/college/z8emnw2lwt2cijtnk2tuo8oowx1rem4d8q.png)
![f(-11)=34606-320](https://img.qammunity.org/2021/formulas/mathematics/college/tdrm8q1rfs04q2zyw9f9bjqbnxk5c8x6as.png)
![f(-11)=34286](https://img.qammunity.org/2021/formulas/mathematics/college/hnl1d693hp4017mq3rwj746n1j5lx37ide.png)
Therefore, the remainder is 34286 when f(x) is divided by (x+11).