235k views
0 votes

Given \: cotA = \sqrt{(1)/(3)}

Find all other trigonometric ratios. ​

2 Answers

2 votes

Diagram :-


\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(3,0){2.5cm}}\put(0,0){\line(0,3){2.5cm}}\qbezier(12.4,0)(6.6,5)(0,12.4)\put(-2,13){\sf A}\put(13,-2){\sf C}\put(-2,-2){\sf B}\put(-3,6){\sf 1}\put(6,-3){\sf \sqrt3$}\put(7,7){\sf 2}\end{picture}

Solution :-

Given ,

  • cotA =
    \sf \sqrt{(1)/(3)}=(1)/(\sqrt3)

We need to find ,

  • All the trigonometric identities

First finding the other side of the triangle using Pythagoras theorem .

Hypotenuse² = Base² + Height²


\to\sf Hypotenuse^2 = (1)^2 + (\sqrt3)^2


\to\sf Hypotenuse^2 = 1 + 3


\to \sf Hypotenuse = \sqrt4


\to\bf Hypotenuse = 2

Now ,


  • \rm sinA = (opposite)/(hypotenuse)=\sf(\sqrt3)/(2)


  • \rm cosA = (adjacent)/(hypotenuse)=\sf(1)/(2)


  • \rm tanA = (opposite)/(adjacent)=\sf(\sqrt3)/(1)


  • \rm cosecA=(hypotenuse)/(adjacent)=\sf(2)/(\sqrt3)


  • \rm secA = (Hypotenuse)/(adjacent)=\sf(2)/(1)


  • \rm cotA = Already\; given =\sf (1)/(\sqrt3)
User Pekapa
by
4.7k points
5 votes

Given :


\tt cotA = \sqrt{ (1)/(3)}


\tt \implies cotA = (1)/(√(3))

To Find :

All other trigonometric ratios, which are :

  • sinA
  • cosA
  • tanA
  • cosecA
  • secA

Solution :

Let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base


\tt We \: are \: given, \: cotA = (1)/(√(3))


\tt We \: know \: that \: cot \theta = (base)/(perpendicular)


\tt \implies (base)/(perpendicular) = (1)/(√(3))


\tt \implies (AB)/(BC) = (1)/(√(3))


\tt \implies AB = 1x \: ; \: BC = √(3)x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have

AC² = AB² + BC²


\tt \implies AC^(2) = (1x)^(2) + (√(3)x)^(2)


\tt \implies AC^(2) = 1x^(2) + 3x^(2)


\tt \implies AC^(2) = 4x^(2)


\tt \implies AC = \sqrt{4x^(2)}


\tt \implies AC = 2x

Now,


\tt sin \theta = (perpendicular)/(hypotenuse)


\tt \implies sinA = (BC)/(AC)


\tt \implies sinA = (√(3)x)/(2x)


\tt \implies sinA = (√(3))/(2)


\Large \boxed{\tt sinA = (√(3))/(2)}


\tt cos \theta = (base)/(hypotenuse)


\tt \implies cosA = (AB)/(AC)


\tt \implies cosA = (1x)/(2x)


\tt \implies cosA = (1)/(2)


\Large \boxed{\tt cosA = (1)/(2)}


\tt tan \theta = (perpendicular)/(base)


\tt \implies tanA = (BC)/(AB)


\tt \implies tanA = (√(3)x)/(1x)


\tt \implies tanA = √(3)


\Large \boxed{\tt tanA = √(3)}


\tt cosec \theta = (hypotenuse)/(perpendicular)


\tt \implies cosecA = (AC)/(BC)


\tt \implies cosecA = (2x)/(√(3)x)


\tt \implies cosecA = (2)/(√(3))


\Large \boxed{\tt cosecA = (2)/(√(3))}


\tt sec \theta = (hypotenuse)/(base)


\tt \implies secA = (AC)/(AB)


\tt \implies secA = (2x)/(1x)


\tt \implies secA = 2


\Large \boxed{\tt secA = 2}

Given \: cotA = \sqrt{(1)/(3)} Find all other trigonometric ratios. ​-example-1
User Aybek Can Kaya
by
4.4k points