24.8k views
1 vote
(x5 + y5) ÷ (x + y) please answer ASAP

1 Answer

5 votes

Answer:


(x^5+y^5)/(x+y)=x^4-x^3y+x^2y^2-xy^3+y^4

Explanation:

Given the expression


\left(x^5+y^5\right)/ \left(x+y\right)


\mathrm{Apply\:factoring\:rule:\:}x^n+y^n=\left(x+y\right)\left(x^(n-1)-x^(n-2)y+\:\dots \:-\:xy^(n-2)\:+\:y^(n-1)\right)\:\quad \quad \mathrm{n\:is\:odd}


x^5+y^5=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)


=(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right))/(x+y)

Cancel the common factor: x+y


=x^4-x^3y+x^2y^2-xy^3+y^4

Thus,


(x^5+y^5)/(x+y)=x^4-x^3y+x^2y^2-xy^3+y^4

User BetterCallMe
by
4.8k points