96.4k views
6 votes
Giving my all points away! What is the Value of log5512, when log 2 = 0.3010 and log 3 = 0.4771?

User Mmccabe
by
4.2k points

2 Answers

9 votes


\\ \rm\Rrightarrow log_5512


\\ \rm\Rrightarrow log_52^9


\\ \rm\Rrightarrow 9log_52

  • Use change of base


\\ \rm\Rrightarrow 9(log2)/(log5)


\\ \rm\Rrightarrow 3.876

If your question is something different let me know by which I can change my answer

7 votes

Answer:

3.876 (3 d.p.)

Explanation:

Given:


  • \log_(10)2=0.3010

  • \log_(10)3=0.4771

Please note: The question gives two values of log base 10 which should be used to help find the value of
\log_5512

Log Law: Change of Base


\log_ba=(\log_xa)/(\log_xb)

Change the given expression to log base 10:


\implies \log_5512=(\log_(10)512)/(\log_(10)5)

Replace 512 with 2⁹, and 5 with 10/2:


\implies (log_10(2^9))/(\log_(10)(10)/(2))


\textsf{Apply the Power Log law}: \quad \log_ax^n=n\log_ax


\implies (9log_10(2))/(\log_(10)(10)/(2))


\textsf{Apply the Log Quotient law}: \quad \log_a(x)/(y)=\log_ax - \log_ay


\implies (9log_10(2))/(\log_(10)10-\log_(10)2)


\textsf{Apply log law}: \quad \log_aa=1


\implies (9log_10(2))/(1-\log_(10)2)

Given:


  • \log_(10)2=0.3010

Substitute this into the expression and simplify:


\implies (9(0.3010))/(1-0.3010)


\implies (2.709)/(0.699)


\implies 3.876\:(\sf 3\: d.p.)

User Shloime Rosenblum
by
4.6k points