159k views
23 votes
What is the value of tan(alpha), if CH=3, BH=6.4

What is the value of tan(alpha), if CH=3, BH=6.4-example-1
User Stobor
by
3.1k points

2 Answers

3 votes


\\ \tt\longmapsto CH^2=AH(BH)


\\ \tt\longmapsto 9=6.4AH


\\ \tt\longmapsto AH=1.4

So


\\ \tt\longmapsto tan\alpha=CH/AH


\\ \tt\longmapsto tan\alpha =(3)/(1.4)


\\ \tt\longmapsto tan\alpha=2.14

User Perty
by
3.4k points
12 votes

Answer:

  • 6.4 / 3 or 2.13

Explanation:

  • tangent = opposite / adjacent
  • tan α = CH/AH

The triangles ACH and CBH are similar by AA.

According to similarity we have same ratio of corresponding sides:

  • CH/AH = BH/CH

So the value of the tan α is:

  • tan α = BH/CH = 6.4 / 3 ≈ 2.13
User Antonio Glavocevic
by
3.2k points