121k views
1 vote
Can you help me I have no idea how to do this

Can you help me I have no idea how to do this-example-1
Can you help me I have no idea how to do this-example-1
Can you help me I have no idea how to do this-example-2
User Schoenk
by
7.5k points

1 Answer

6 votes

Answer:


(f + g)(x) = 7 - 6x --- (1)


(f - g)(x) = 6x - 1 -- (2)


(f . g)(x) =4(5^x) ---- (3)


(f / g)(x) = (4)/(5^x) ----- (4)


(f + g)(x) = -7x-7 --- (5)


(f - g)(x) = 9x+ 9 --- (6)


(f . g)(x) = (-8)(x+1)^2 --- (7)


(f / g)(x) = -(1)/(8) ----- (8)


F(t) = (9)/(5)t^2 + 32 ---- (9)


T(t) = (t - 2)^2 - 4 --- (10)

Explanation:

Given


f(x) = 3


g(x) = 4 - 6x

Solving (1): (f + g)(x)


(f + g)(x) = f(x) + g(x)

So, we have:


(f + g)(x) = 3 + 4 - 6x


(f + g)(x) = 7 - 6x

Solving (2): (f - g)(x)


(f - g)(x) =f(x) - g(x)

So, we have:


(f - g)(x) =3 - (4 - 6x)


(f - g)(x) =3 - 4 + 6x


(f - g)(x) =-1 + 6x


(f - g)(x) = 6x - 1

Given


f(x) = 4


g(x) = 5^x

Solving (3): (f . g)(x)


(f . g)(x) =f(x) * g(x)

So, we have:


(f . g)(x) =4 * 5^x


(f . g)(x) =4(5^x)

Solving (4): (f / g)(x)


(f / g)(x) = (f(x))/(g(x))

So, we have:


(f / g)(x) = (4)/(5^x)

Given

f(x) = x + 1

g(x) = -8 - 8x

Solving (5): (f + g)(x)


(f + g)(x) = f(x) + g(x)

So, we have:


(f + g)(x) = x + 1 -8-8x

Collect Like Terms


(f + g)(x) = x -8x+ 1 -8


(f + g)(x) = -7x-7

Solving (6): (f - g)(x)


(f - g)(x) = f(x) - g(x)

So, we have:


(f - g)(x) = x + 1 -( -8-8x)


(f - g)(x) = x + 1 +8+8x

Collect Like Terms


(f - g)(x) = x +8x+ 1 +8


(f - g)(x) = 9x+ 9

Solving (7): (f . g)(x)


(f . g)(x) = f(x) . g(x)

So, we have:


(f . g)(x) = (x+1) . (-8 - 8x)

Factorize


(f . g)(x) = (x+1) .(-8) (1 + x)

Rewrite as:


(f . g)(x) = (x+1) .(-8) (x+1)


(f . g)(x) = (-8)(x+1) (x+1)


(f . g)(x) = (-8)(x+1)^2

Solving (8): (f / g)(x)


(f / g)(x) = (f(x))/(g(x))

So, we have:


(f / g)(x) = ((x+1))/((-8-8x))

Factorize


(f / g)(x) = ((x+1))/(-8(1+x))


(f / g)(x) = (1)/(-8)


(f / g)(x) = -(1)/(8)

Solving (9):

From the question, we have that:


F(c) = (9)/(5)c + 32


C(t) = t^2

Required

Determine function F in terms of c

The implication of this question is to solve for
F(c(t))

If
F(c) = (9)/(5)c + 32 and
C(t) = t^2,

Then


F(c(t)) = (9)/(5)*t^2 + 32


F(c(t)) = (9)/(5)t^2 + 32

This can be rewritten as:


F(t) = (9)/(5)t^2 + 32

Solving (10):


T(h) = h^2 - 4


h(t) = t - 2

Required

Find
T(h(t))

If
T(h) = h^2 - 4 and
h(t) = t - 2, then


T(h(t)) = (t - 2)^2 - 4

This is gotten by substituting t -2 for h

The solution can be rewritten as:


T(t) = (t - 2)^2 - 4

User Yeshodhan Kulkarni
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories