121k views
1 vote
Can you help me I have no idea how to do this

Can you help me I have no idea how to do this-example-1
Can you help me I have no idea how to do this-example-1
Can you help me I have no idea how to do this-example-2
User Schoenk
by
7.5k points

1 Answer

6 votes

Answer:


(f + g)(x) = 7 - 6x --- (1)


(f - g)(x) = 6x - 1 -- (2)


(f . g)(x) =4(5^x) ---- (3)


(f / g)(x) = (4)/(5^x) ----- (4)


(f + g)(x) = -7x-7 --- (5)


(f - g)(x) = 9x+ 9 --- (6)


(f . g)(x) = (-8)(x+1)^2 --- (7)


(f / g)(x) = -(1)/(8) ----- (8)


F(t) = (9)/(5)t^2 + 32 ---- (9)


T(t) = (t - 2)^2 - 4 --- (10)

Explanation:

Given


f(x) = 3


g(x) = 4 - 6x

Solving (1): (f + g)(x)


(f + g)(x) = f(x) + g(x)

So, we have:


(f + g)(x) = 3 + 4 - 6x


(f + g)(x) = 7 - 6x

Solving (2): (f - g)(x)


(f - g)(x) =f(x) - g(x)

So, we have:


(f - g)(x) =3 - (4 - 6x)


(f - g)(x) =3 - 4 + 6x


(f - g)(x) =-1 + 6x


(f - g)(x) = 6x - 1

Given


f(x) = 4


g(x) = 5^x

Solving (3): (f . g)(x)


(f . g)(x) =f(x) * g(x)

So, we have:


(f . g)(x) =4 * 5^x


(f . g)(x) =4(5^x)

Solving (4): (f / g)(x)


(f / g)(x) = (f(x))/(g(x))

So, we have:


(f / g)(x) = (4)/(5^x)

Given

f(x) = x + 1

g(x) = -8 - 8x

Solving (5): (f + g)(x)


(f + g)(x) = f(x) + g(x)

So, we have:


(f + g)(x) = x + 1 -8-8x

Collect Like Terms


(f + g)(x) = x -8x+ 1 -8


(f + g)(x) = -7x-7

Solving (6): (f - g)(x)


(f - g)(x) = f(x) - g(x)

So, we have:


(f - g)(x) = x + 1 -( -8-8x)


(f - g)(x) = x + 1 +8+8x

Collect Like Terms


(f - g)(x) = x +8x+ 1 +8


(f - g)(x) = 9x+ 9

Solving (7): (f . g)(x)


(f . g)(x) = f(x) . g(x)

So, we have:


(f . g)(x) = (x+1) . (-8 - 8x)

Factorize


(f . g)(x) = (x+1) .(-8) (1 + x)

Rewrite as:


(f . g)(x) = (x+1) .(-8) (x+1)


(f . g)(x) = (-8)(x+1) (x+1)


(f . g)(x) = (-8)(x+1)^2

Solving (8): (f / g)(x)


(f / g)(x) = (f(x))/(g(x))

So, we have:


(f / g)(x) = ((x+1))/((-8-8x))

Factorize


(f / g)(x) = ((x+1))/(-8(1+x))


(f / g)(x) = (1)/(-8)


(f / g)(x) = -(1)/(8)

Solving (9):

From the question, we have that:


F(c) = (9)/(5)c + 32


C(t) = t^2

Required

Determine function F in terms of c

The implication of this question is to solve for
F(c(t))

If
F(c) = (9)/(5)c + 32 and
C(t) = t^2,

Then


F(c(t)) = (9)/(5)*t^2 + 32


F(c(t)) = (9)/(5)t^2 + 32

This can be rewritten as:


F(t) = (9)/(5)t^2 + 32

Solving (10):


T(h) = h^2 - 4


h(t) = t - 2

Required

Find
T(h(t))

If
T(h) = h^2 - 4 and
h(t) = t - 2, then


T(h(t)) = (t - 2)^2 - 4

This is gotten by substituting t -2 for h

The solution can be rewritten as:


T(t) = (t - 2)^2 - 4

User Yeshodhan Kulkarni
by
9.5k points