181k views
8 votes
Using Newton-Raphson method to find the approximate root of the equation x log_{10}x=1.2

( Carry out three iterations ).
\\ \\
Thank uh!

User PawelP
by
5.0k points

1 Answer

9 votes

Answer:


x \approx 2.740646096

Explanation:

Given:


x\log_(10)x=1.2

Rewrite so that it's equal to zero:


\implies x\log_(10)x-1.2=0

Therefore:


\implies f(x)=x\log_(10)(x)-1.2

Differentiate the function:

Use the product rule to differentiate
x\log_(10)(x):


\textsf{Let }u=x \implies (du)/(dx)=1


\textsf{Let }v=\log_(10)(x) \implies (dv)/(dx)=(1)/(x \ln 10)


\begin{aligned}\implies (dy)/(dx) & = u(dv)/(dx)+v (du)/(dx)\\& = (x)/(x \ln 10)+\log_(10)(x)\\& = (1)/(\ln 10)+\log_(10)(x)\end{aligned}


\implies f'(x)=(1)/(\ln 10)+\log_(10)(x)


\implies f'(x)=(1+\ln 10 \log_(10)(x))/(\ln 10)

Newton-Rhapson iteration formula


x_(n+1)=x_n-(f(x_n))/(f'(x_n))

Substitute the function and its derivative into the formula, replacing x with
x_n:


\implies x_(n+1)=x_n-(x_n\log_(10)(x_n)-1.2)/((1+\ln 10 \log_(10)(x))/(\ln 10))


\implies x_(n+1)=x_n-(x_n\ln 10\log_(10)(x_n)-1.2\ln 10)/(1+\ln 10 \log_(10)(x_n))

Therefore, the iteration formula is:


x_(n+1)=x_n-(x_n\ln 10\log_(10)(x_n)-1.2\ln 10)/(1+\ln 10 \log_(10)(x_n))

Let
x_0=3

Substitute this into the formula and carry out 3 iterations:


\implies x_(1)=3-(3\ln 10\log_(10)(3)-1.2\ln 10)/(1+\ln 10 \log_(10)(3))=2.746149035


\implies x_2=2.740648841


\implies x_3= 2.740646096

User Tomax
by
5.3k points