Answer:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = \frac{e^\big{arctan(3e^(4x))}}{2} + C](https://img.qammunity.org/2021/formulas/mathematics/college/j54deg7zpejn0bnx1pjng0s7b6b8u40t8q.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/ljowxevzhh8dk8mfdheam579ywk5jvteyi.png)
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
U-Substitution
Explanation:
Step 1: Define
Identify
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/e10h01zj09vpy4j16rxzmcea9honustylq.png)
Step 2: Integrate Pt. 1
- [Integrand] Rewrite:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = \int {\frac{6e^\big{arctan(3e^(4x)) + 4x}}{1 + 9e^\big{8x}}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/xmqitwedkgl7mh69e0auoo5svh425xn71c.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = 6\int {\frac{e^\big{arctan(3e^(4x)) + 4x}}{1 + 9e^\big{8x}}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/503rrh8adkbggjd57ue8kqtxf1pd8ajw0p.png)
Step 3: integrate Pt. 2
Set variables for u-substitution.
- Set u:
![\displaystyle u = 4x](https://img.qammunity.org/2021/formulas/mathematics/college/manz6x8en8ywd36ismwo5ok9qyw52ij9ge.png)
- [u] Differentiate [Basic Power Rule, Multiplied Constant]:
![\displaystyle du = 4 \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/wuoi75d9imcktu6gxp8whl2icpbd9zqnul.png)
Step 4: Integrate Pt. 3
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{4e^\big{arctan(3e^(4x)) + 4x}}{1 + 9e^\big{8x}}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/wnokv013jzlnyw2de4ia168amldwqdcdxd.png)
- [Integral] U-Substitution:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{e^\big{arctan(3e^u) + u}}{1 + 9e^\big{2u}}} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/cu58fqopljst2vyd5wq463naqtvkrwl85e.png)
Step 5: Integrate Pt. 4
Set variables for u-substitution #2.
- Set v:
![\displaystyle v = 9e^(2u) + 1](https://img.qammunity.org/2021/formulas/mathematics/college/wk8sgo9uvhfmk1y7pa572zscy5hzt7ldrm.png)
- [v] Differentiate [Exponential Differentiation, Chain Rule]:
![\displaystyle dv = 18e^(2u) \ du](https://img.qammunity.org/2021/formulas/mathematics/college/g4vo3wnekwdwfng67n5jcurb889dbtgczy.png)
- [v] U-Solve:
![\displaystyle u = ln \Big( (√(v - 1))/(3) \Big)](https://img.qammunity.org/2021/formulas/mathematics/college/9jzhoidli00396k6pbewysmu2zjyucvafk.png)
- [dv] U-Solve:
![\displaystyle du = (e^(-2u))/(18) \ dv](https://img.qammunity.org/2021/formulas/mathematics/college/fz3h8j6ds9nx5arhfe5xg6bvdtvo7vz8ie.png)
- [U-Solve] Rewrite u:
![\displaystyle e^u = (√(v - 1))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/gvsut6fufgmh3aovf1zmih6gjrz9c33728.png)
Step 6: Integrate Pt. 5
- [Integral] U-Solve:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{e^\big{arctan(3((√(v - 1))/(3))) + ln((√(v - 1))/(3))}}{1 + 9((√(v - 1))/(3))^2} (1)/(18e^(2u))\, dv](https://img.qammunity.org/2021/formulas/mathematics/college/cyd7wqe4vu9639n7v2c1fuyf9mtulbmshh.png)
- [Integral] Simplify:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{√(v - 1)e^\big{arctan(√(v - 1))}}{3[1 + v - 1]} (1)/(18((√(v - 1))/(3))^2)\, dv](https://img.qammunity.org/2021/formulas/mathematics/college/wn3pgmiaom824j9fw7w40wv4hgbblwdd1e.png)
- [Integral] Simplify:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{√(v - 1)e^\big{arctan(√(v - 1))}}{3v} (1)/(2(v - 1))\, dv](https://img.qammunity.org/2021/formulas/mathematics/college/1kh80jpde9qyn5mekapqrg0v76wnitfw35.png)
- [Integral] Simplify:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (3)/(2)\int {\frac{e^\big{arctan(√(v - 1))}}{6v√(v - 1)} \, dv](https://img.qammunity.org/2021/formulas/mathematics/college/yb8p8rjgmzsbx0te24z9cbp9u2euk0wjyc.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {\bigg( 6e^\big{4x} \cdot \frac{e^\big{arctan(3e^(4x))}}{1 + 9e^\big{8x}} \bigg)} \, dx = (1)/(4)\int {\frac{e^\big{arctan(√(v - 1))}}{v√(v - 1)} \, dv](https://img.qammunity.org/2021/formulas/mathematics/college/cyqx6rfzqy3wj4768e9dlsglw44gc8bn22.png)
Step 7: Integrate Pt. 6
Set variables for u-substitution #3.
- Set z:
![\displaystyle z = arctan(√(v - 1))](https://img.qammunity.org/2021/formulas/mathematics/college/k0zbkjbj30esyl50whonoqnhj58g0poaip.png)
- [z] Differentiate [Arctrig Differentiation, Chain Rule]:
![\displaystyle dz = (1)/(2v√(v - 1)) \ dv](https://img.qammunity.org/2021/formulas/mathematics/college/q9ms9x6v5kn654hp2pvj4j9ncxlx5ciwfo.png)
See attachment for rest of work (would not fit entire answer in answering box).