Hey there mate ;)
Note that the quadratic function
A(x) = x(100-2x) gives the area.
Now, this equation is equivalent to:
A(x) = 100x - 2x²
To find maximum value of A, we first find the derivative of the given function:
![(dA)/(dx) = 100 - 4x](https://img.qammunity.org/2023/formulas/mathematics/college/secescbdasi2stuidurfkikjtxhm399i78.png)
Now find the critical value by setting dA/dx=0, that is:-
![(dA)/(dx) = 100 - 4x = 0](https://img.qammunity.org/2023/formulas/mathematics/college/76anw6rvq8nfie1gh368d5jzuor8qcqogt.png)
Solving for x, we get:
![x = (100)/(4) = 25](https://img.qammunity.org/2023/formulas/mathematics/college/iumhuvu0d3fcocul6huyzq96men34kb5oj.png)
Hence, the critical point is x=25
Now, Find 2nd derivative to check if the equation has maximum value:
![A](https://img.qammunity.org/2023/formulas/mathematics/college/pqgbrcbpzcj5a455e1cai9ara3gtyy00by.png)
Noting that the 2nd derivative is negative, hence, we have a maximum value. Infact, the maximum value in this case is when the value of x = 25.
The maximum area is therefore,
![A = 25(100 - 2(25))](https://img.qammunity.org/2023/formulas/mathematics/college/odtbvtuoej8m4x942h4sar71nlk68h77qz.png)
→ The Correct answer is:
![1250ft^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/wh8c1xmo4fdlbujsv91a7y8aertnw7xpit.png)