Answer:
During nuclear fission, a neutron collides with a uranium atom and splits it, releasing a large amount of energy in the form of heat and radiation. More neutrons are also released when a uranium atom splits. These neutrons continue to collide with other uranium atoms, and the process repeats itself over and over again.
Step-by-step explanation:
In nuclear fission the nucleus of an atom breaks up into two lighter nuclei. The process may take place spontaneously in some cases or may be induced by the excitation of the nucleus with a variety of particles (e.g., neutrons, protons, deuterons, or alpha particles) or with electromagnetic radiation in the form of gamma rays. In the fission process, a large quantity of energy is released, radioactive products are formed, and several neutrons are emitted. These neutrons can induce fission in a nearby nucleus of fissionable material and release more neutrons that can repeat the sequence, causing a chain reaction in which a large number of nuclei undergo fission and an enormous amount of energy is released. If controlled in a nuclear reactor, such a chain reaction can provide power for society’s benefit. If uncontrolled, as in the case of the so-called atomic bomb, it can lead to an explosion of awesome destructive force.