153,020 views
4 votes
4 votes
Solve for x using quadratic formula :
abx^2 + (b^2 - ac)x - bc = 0​

User PhilB
by
3.1k points

2 Answers

19 votes
19 votes
  • (ab)x^2 + (b^2 - ac)x -bc= 0

  • a = ab
  • b = b² - ac
  • c = -bc

Apply quadratic formula:


\sf x = ( -b \pm √(b^2 - 4ac))/(2a)


\\ \sf\Rrightarrow x = (-(b^2 - ac) \pm √((b^2 -ac)^2-4(ab)(-bc)) )/(2(ab))


\\ \sf\Rrightarrow x= (-b^2 + ac \pm √(\left(b^2-ac\right)^2+4abbc) )/(2ab)


\\ \sf\Rrightarrow x = (-b^2 + ac \pm √(b^4+2b^2ac+a^2c^2) )/(2ab)


\\ \sf\Rrightarrow x = (-b^2 + ac \pm √(\left(b^2+ac\right)^2) )/(2ab)


\\ \sf\Rrightarrow x = (-b^2 + ac \pm( b^2+ac ))/(2ab)


\\ \sf\Rrightarrow x = (-b^2 + ac +( b^2+ac ))/(2ab) \quad or \quad (-b^2 + ac -( b^2+ac ))/(2ab)


\\ \sf\Rrightarrow x = (2ac)/(2ab) \quad or \quad (-2b^2)/(2ab)


\\ \sf\Rrightarrow x = (c)/(b) \quad or \quad (-b)/(a)

User Chad Kennedy
by
3.3k points
21 votes
21 votes

Answer:


\boxed{\sf x = (c)/(b) \quad or \quad (-b)/(a)}

Step-by-step explanation:

Given expression: (ab)x^2 + (b^2 - ac)x + (-bc) = 0

Here given:

  • a = ab
  • b = b² - ac
  • c = -bc

Apply quadratic formula:


\sf x = ( -b \pm √(b^2 - 4ac))/(2a) \quad when \ ax^2 + bx + c = 0

Insert values:


\sf x = (-(b^2 - ac) \pm √((b^2 -ac)^2-4(ab)(-bc)) )/(2(ab))


\sf x = (-b^2 + ac \pm √(\left(b^2-ac\right)^2+4abbc) )/(2ab)


\sf x = (-b^2 + ac \pm √(b^4+2b^2ac+a^2c^2) )/(2ab)


\sf x = (-b^2 + ac \pm √(\left(b^2+ac\right)^2) )/(2ab)


\sf x = (-b^2 + ac \pm( b^2+ac ))/(2ab)


\sf x = (-b^2 + ac +( b^2+ac ))/(2ab) \quad or \quad (-b^2 + ac -( b^2+ac ))/(2ab)


\sf x = (2ac)/(2ab) \quad or \quad (-2b^2)/(2ab)


\sf x = (c)/(b) \quad or \quad (-b)/(a)

User Bstoney
by
2.8k points