Answer:
We get value of n=7
Explanation:
If points lie on same line, they have same slope.
First we will find slope of points (3,5), (−1,3)
Using formula:
![Slope=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b1v433ysk57ysph9isg6glgdwkxxbasf24.png)
We have
![x_1=3, y_1=5, x_2=-1, y_2=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ctwx83ppyuvsrerl1lnq935b0kcv4qmhm.png)
Finding slope
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(3-5)/(-1-3) \\Slope=(-2)/(-4) \\Slope=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lccfejzepysj0h2n6xlm21c4gnf0p2e3t0.png)
Using slope 1/2 and points (−1,3), and (7,n) we can find value of n
![Slope=(y_2-y_1)/(x_2-x_1)\\(1)/(2) =(n-3)/(7-(-1)) \\(1)/(2) =(n-3)/(7+1) \\(1)/(2) =(n-3)/(8)\\Cross\:Multiply\\1(8)=2(n-3)\\8=2n-6\\2n=8+6\\2n=14\\n=(14)/(2)\\n=7](https://img.qammunity.org/2021/formulas/mathematics/high-school/ml65mx3ovc1ktx57pue7iy0zafy6h8op60.png)
So, we get value of n=7