103k views
2 votes
F(x) = 3x + x3

x > 0
a) Differentiate to find f'(x)
Given that f'(x) = 15,
b) Find the value of x​

1 Answer

3 votes

Answer:

Please check the explanation.

Explanation:

Given

f(x) = 3x + x³

Taking differentiate


(d)/(dx)\left(3x+x^3\right)


\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'


=(d)/(dx)\left(3x\right)+(d)/(dx)\left(x^3\right)

solving


(d)/(dx)\left(3x\right)


\mathrm{Take\:the\:constant\:out}:\quad \left(a\cdot f\right)'=a\cdot f\:'


=3(d)/(dx)\left(x\right)


\mathrm{Apply\:the\:common\:derivative}:\quad (d)/(dx)\left(x\right)=1


=3\cdot \:1


=3

now solving


(d)/(dx)\left(x^3\right)


\mathrm{Apply\:the\:Power\:Rule}:\quad (d)/(dx)\left(x^a\right)=a\cdot x^(a-1)


=3x^(3-1)


=3x^2

Thus, the expression becomes


(d)/(dx)\left(3x+x^3\right)=(d)/(dx)\left(3x\right)+(d)/(dx)\left(x^3\right)


=3+3x^2

Thus,

f'(x) = 3 + 3x²

Given that f'(x) = 15

substituting the value f'(x) = 15 in f'(x) = 3 + 3x²

f'(x) = 3 + 3x²

15 = 3 + 3x²

switch sides

3 + 3x² = 15

3x² = 15-3

3x² = 12

Divide both sides by 3

x² = 4


\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))


x=√(4),\:x=-√(4)


x=2,\:x=-2

Thus, the value of x​ will be:


x=2,\:x=-2