Answer:
Width of rectangle = 6 m
Length of rectangle = 11 m
Explanation:
Let width of rectangle = w
Length of rectangle = 3w-7
Area of rectangle = 66 m²
We need to find length and width of rectangle
The formula used is:
![Area=Length * Width](https://img.qammunity.org/2021/formulas/mathematics/high-school/m9k678shv6hsaw4h270a6uth0c968xj8jd.png)
Putting values and finding w
![Area=Length * Width\\66=(3w-7)(w)\\66=3w^2-7w\\3w^2-7w-66=0\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/3bz0smi2lkq1o7de71osjrhyxmoxaj40em.png)
Solve using quadratic formula:
![w=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kiwpy8tmdtfkqraxmzn8r586w11xq4k375.png)
We have a=3, b=-7, c=-66
Putting values and finding w
![w=(-b\pm√(b^2-4ac))/(2a)\\w=(-(-7)\pm√((7)^2-4(3)(-66)))/(2(3))\\w=(7\pm√(49+792))/(6)\\w=(7\pm√(841))/(6)\\w=(7\pm29)/(6)\\w=(7+29)/(6)\:,\:w=(7-29)/(6)\\w=6, w=-3.6](https://img.qammunity.org/2021/formulas/mathematics/high-school/eqbxi5fgef60pn3yxnji34vksjjm0xf4jg.png)
We get values of w as w=6 and w=-3.6
As we know width cannot be negative, so considering w = 6
So, Width = 6
Length = 3w-7 = 3(6)-7 = 18-7 = 11
So, Width of rectangle = 6 m
Length of rectangle = 11 m