106k views
1 vote
find the values of x that would make the area of the rectangle greater than the area of the triangle.can you help me pls​

find the values of x that would make the area of the rectangle greater than the area-example-1
User Danyim
by
6.4k points

1 Answer

3 votes

Answer:


x>3

Explanation:


The\ area\ of\ the\ rectangle\ in\ terms\ of\ x=6x\\The\ area\ of\ the\ triangle\ in\ terms\ of\ x=(4(x+6))/(2)=2(x+6) \\Given\ condition:\\The\ area\ of\ the\ rectangle>The\ area\ of\ the\ triangle\\Hence,\\6x>2(x+6)\\Now, as\ practically\ any\ of\ the\ side\ of\ the\ polygons\ cannot\ be\ negative.\\\\Hence,\\6x>2x+12\\6x-2x>2x+12-2x\\4x>12\\(4x)/(4) >(12)/(4) \\x>3


Hence,\\x\ could\ be\ any\ real\ number\ greater\ than\ 3.