460,995 views
4 votes
4 votes

4x {}^(2) + 20x + 25
using appropriate identity factories the following​

User Macs Dickinson
by
2.7k points

1 Answer

22 votes
22 votes


\sf{\qquad\qquad\huge\underline{{\sf Answer}}}

Let's Solve ~


\qquad \sf  \dashrightarrow \: 4 {x}^(2) + 20x + 25


\qquad \sf  \dashrightarrow \: 4 {x}^(2) + 10x + 10x + 25


\qquad \sf  \dashrightarrow \: 2x(2x + 5) + 5(2x + 5)


\qquad \sf  \dashrightarrow \: (2x + 5) (2x + 5)


\qquad \sf  \dashrightarrow \: (2x + 5) {}^(2)

or


\sf{\qquad \sf  \dashrightarrow \: 4x² + 20x + 25 }


\sf{\qquad \sf  \dashrightarrow \: (2x)² + (2 \sdot 2x \sdot 5) + (5)²}

[ it's similar to expression - a² + 2ab + b² that is equal to (a + b)² ]

so, let's use this identity here to factorise :


\sf{\qquad \sf  \dashrightarrow \: (2x + 5)²}

I hope it was helpful ~

User Jeff Williams
by
2.8k points