27.5k views
4 votes
Which of the following is a solution of X^2 - 7X = -5

1 Answer

3 votes

Answer:

The solution is:


x=(√(29)+7)/(2),\:x=(-√(29)+7)/(2)

Explanation:

Given the equation


x^2\:-7x=\:-5


\mathrm{Add\:}a^2=\left(-(7)/(2)\right)^2\mathrm{\:to\:both\:sides}


x^2-7x+\left(-(7)/(2)\right)^2=-5+\left(-(7)/(2)\right)^2


x^2-7x+\left(-(7)/(2)\right)^2=(29)/(4)

Apply perfect square rule


\left(x-(7)/(2)\right)^2=(29)/(4)


\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)

solving


x-(7)/(2)=\sqrt{(29)/(4)}


x-(7)/(2)=(√(29))/(√(4))


x-(7)/(2)=(√(29))/(2)


\mathrm{Add\:}(7)/(2)\mathrm{\:to\:both\:sides}


x-(7)/(2)+(7)/(2)=(√(29))/(2)+(7)/(2)


x=(√(29)+7)/(2)

also solving


x-(7)/(2)=-\sqrt{(29)/(4)}


\mathrm{Add\:}(7)/(2)\mathrm{\:to\:both\:sides}


x-(7)/(2)+(7)/(2)=-(√(29))/(2)+(7)/(2)


x=(-√(29)+7)/(2)

Thus, the solution is:


x=(√(29)+7)/(2),\:x=(-√(29)+7)/(2)

User Colymore
by
4.9k points