Answer:
From the given options, option D is the only choice that contains (w-5).
Explanation:
Given the expression
![w^2-w-20](https://img.qammunity.org/2021/formulas/mathematics/college/6ew60w4uik2bk9y0iwrkay991yq7n69khz.png)
Breaking the expression into groups
![=\left(w^2+4w\right)+\left(-5w-20\right)](https://img.qammunity.org/2021/formulas/mathematics/college/z90w75uc755qgh83bo16ohaftz6csyypye.png)
Factor out 'w' form w²+4w = w(w+4)
Factor out 'w' from -5w-20= -5(w+4)
so
![=w\left(w+4\right)-5\left(w+4\right)](https://img.qammunity.org/2021/formulas/mathematics/college/5wol5pbmggumzx1rrooxhzpn51pt6why2q.png)
Factor out common term: w+4
![=\left(w+4\right)\left(w-5\right)](https://img.qammunity.org/2021/formulas/mathematics/college/o8brjk7w0lj3kx3hoabm7jde9k0vtddwj2.png)
Thus, the factors are: (w+4) and (w-5)
Therefore, from the given options, option D is the only choice that contains (w-5).