Answer:
![y = -3x +1](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/mks1fo9kks2z1l35fnfjk3be5yugugwk3f.png)
Step-by-step explanation:
Given
![y = x^3 + 3x^2 + 2](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/wzxif1qflwc2z5mpkd0kk2e5hd5empgl1k.png)
Required
Determine the equation at the point of inflection
The point of inflection of a curve is the point where the second derivative is 0.
So:
![y = x^3 + 3x^2 + 2](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/wzxif1qflwc2z5mpkd0kk2e5hd5empgl1k.png)
First derivative is:
![y' = 3x^2 + 6x](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/usuamu8r5x7fe9n5atzh9u5e10mqqbz3fr.png)
Second derivative:
![y](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/x60g6yh3wmb0aqcnkqhq4hhjb32rxdpti0.png)
Equate to 0
![6x + 6 = 0](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/s0ydsm0dd1au4tswfzqq12ujqgmz5jk8z8.png)
Solve for x
![6x = -6](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/4z30nujwo5lxrqtg2820c0jebdt4qezhij.png)
![x = -1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3loqdtdg9hh8zzjli4de5zvkusbzzj2ya6.png)
Next, we calculate the slope (m) of the point using the first derivative.
Substitute -1 for x in
![y' = 3x^2 + 6x](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/usuamu8r5x7fe9n5atzh9u5e10mqqbz3fr.png)
![m = 3*-1^2 + 6 * -1](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/8b38o4hb485s7yjob4rrp1tk0bm2lbip4h.png)
![m = 3*1 - 6](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/38rpqb4x15cv62163k7q79796tyha4fg6n.png)
![m = 3 - 6](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/f8r7qx7v51pdtbuj0qetjg5jz0xtz0bzwb.png)
![m = -3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2q0zwfjcpr0hvd50h00u2fomc7m4xl9232.png)
To get the y equivalent;
Substitute
in
![y = x^3 + 3x^2 + 2](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/wzxif1qflwc2z5mpkd0kk2e5hd5empgl1k.png)
![y = (-1)^3 + 3(-1)^2 + 2](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/pf6djzccr8i9xlyoeqwlsfgrq67s3mzdtq.png)
![y = -1 + 3+ 2](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/4169dadquqn63y3p2tumfzeuhgcsug67is.png)
![y = 4](https://img.qammunity.org/2021/formulas/mathematics/college/cg1pw3ut82ijwocz6e1ru41m29p1o8g646.png)
Lastly, we calculate the line equation using:
![y - y_1 =m(x- x_1)](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/6i295pbgrpigq9uga6lpe1szykj3gortss.png)
Where
and
![y = 4](https://img.qammunity.org/2021/formulas/mathematics/college/cg1pw3ut82ijwocz6e1ru41m29p1o8g646.png)
![m = -3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2q0zwfjcpr0hvd50h00u2fomc7m4xl9232.png)
So, we have:
![y - 4 = -3(x -(-1))](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/1i63wdys0r2b7nc5rva04z0mwe5hlotkf8.png)
![y - 4 = -3(x +1)](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/i4t9pqek3k37b8o6xkvdm0s0x8xxj3djfd.png)
![y - 4 = -3x -3](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/tapo0iu3cgrou2wfn97sxdob4h2dvphl9g.png)
Make y the subject
![y = -3x -3 +4](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/h6x0kl9d6153opboar588xysq1ukkixjr5.png)
![y = -3x +1](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/mks1fo9kks2z1l35fnfjk3be5yugugwk3f.png)
Hence, the equation is:
![y = -3x +1](https://img.qammunity.org/2021/formulas/advanced-placement-ap/college/mks1fo9kks2z1l35fnfjk3be5yugugwk3f.png)