Answer:
Shortest distance from the mountain is 3.17 miles.
Explanation:
From the figure attached,
Let a mountain is located at point A.
Angle between the mountain and point B (∠B) = 53°
Angle between the mountain and point C (∠C) = 78°
Distance between these points = 3 miles
Since, m∠A + m∠B + m∠C = 180°
m∠A + 53° + 78° = 180°
m∠A = 180°- 131° = 49°
By applying sine rule in triangle ABC,
![\frac{\text{sin}(49)}{BC}=\frac{\text{sin}(53)}{AC}= \frac{\text{sin}(78)}{AB}](https://img.qammunity.org/2021/formulas/mathematics/high-school/l8hp3klutaoprzt52fynrnst7ceymlwpef.png)
![\frac{\text{sin}(49)}{3}=\frac{\text{sin}(53)}{AC}= \frac{\text{sin}(78)}{AB}](https://img.qammunity.org/2021/formulas/mathematics/high-school/856226klpajr59uoay3xxpoebtwndy7tin.png)
![\frac{\text{sin}(49)}{3}=\frac{\text{sin}(53)}{AC}](https://img.qammunity.org/2021/formulas/mathematics/high-school/b2s9lgh2aryvgysh96yek72h96rxr4qggf.png)
AC =
![\frac{3\text{sin}(53)}{\text{sin}(49)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ujn4qyx8eovqv1nvcphd89vreev4x02vpn.png)
AC = 3.17 miles
![\frac{\text{sin}(49)}{3}=\frac{\text{sin}(78)}{AB}](https://img.qammunity.org/2021/formulas/mathematics/high-school/u0e5krf1zpspbh1mgfkc7kgx3svb5z8hkg.png)
AB =
![\frac{3\text{sin}(78)}{\text{sin}(49)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/lkbfz3gobcu0chsa56kz7rma3daar0lqpc.png)
AB = 3.89 miles
Therefore, shortest distance from the mountain is 3.17 miles.