7.4k views
7 votes
The Precision Scientific Instrument Company manufactures thermometers that are supposed to give readings of 0°C at the freezing point of water. Tests on a large sample of these thermometers reveal that at the freezing point of water, some give readings below 0°C (denoted by negative numbers) and some give readings above 0°C (denoted by positive numbers). Assume that the mean reading is 0°C and the standard deviation of the readings is 1.00°C. Also assume that the frequency distribution of errors closely resembles the normal distribution. A thermometer is randomly selected and tested. Find the temperature reading corresponding to the given information.

​If 6.3% of the thermometers are rejected because they have readings that are too high and another 6.3% are rejected because they have readings that are too low, find the two readings that are cutoff values separating the rejected thermometers from the others.

A: –1.46° , 1.46°

B: –1.45° , 1.45°

C: –1.39° , 1.39°

D: –1.53° , 1.53°

1 Answer

4 votes

Answer:

-1.53 , 1.53

Explanation:

It is basically asking you to find the percentiles. so for the bottom 6.3% you would type into your calculator 2nd, VARS, invNorm, area: .063, mean: 0, and Standard Deviation: 1 which gives you -1.53.

for the upper 6.3% you have to take 1-.063=.937 to get the upper percentile. now type into your calculator 2nd, VARS, invNorm, area: .937, mean: 0, and Standard Deviation: 1 which gives you 1.53.


I hope I helped :D

User Diboliya
by
4.3k points