Answer:
![\textsf{A.} \quad e^(-y)=\cos x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/vrmf0x86gun303u1ihivjtk4egli9ivvf6.png)
Step-by-step explanation:
Given differential equation and initial condition:
![\begin{cases}y'=e^y \sin x\\y(-\pi)=0\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xqlpry5pulsk707x93m50rad2kykhxplvj.png)
Rearrange the differential equation so that all the terms containing y are on the left-hand side, and all the terms containing x are on the right-hand side:
![y'=e^y \sin x](https://img.qammunity.org/2023/formulas/mathematics/high-school/2tpgu0b3mzluei4vstlbf9zmqhxfcjocc6.png)
![(dy)/(dx)=e^y \sin x](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ah59wfsc5lyl91xbmcppa8msr8go740n7.png)
![(1)/(e^y)\; dy=\sin x\; dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/kic08ox3h2bm46xs5y1xdkyz0w9bwi0yf4.png)
![e^(-y)\; dy=\sin x\; dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/2cjo79xhzrx1s1np0xr8qprctkb3dpy4a5.png)
Integrate both sides of the equation:
![\begin{aligned}\displaystyle \int e^(-y)\; dy&=\int \sin x\; dx\\\\-e^(-y)&=-\cos x+C\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e2awz3bw9r6mj6ghbppa5b2zvsckv9ii7a.png)
Substitute the given condition y(-π) = 0 into the equation and solve for C:
![\begin{aligned}-e^(-0)&=-\cos (-\pi)+C\\\\-1&=1+C\\\\C&=-2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qxzm8jrfy3136pgfro1fg5zddtjqtbs8du.png)
Substitute the found value of C into the equation:
![-e^(-y)=-\cos x-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dxio9s412nfl147g97tw49gw2ew0jvctvt.png)
Multiply both sides by -1:
![\boxed{e^(-y)=\cos x+2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9o9g08cp11clhvv7vljjgf6gzv0k6nc5ia.png)
![\hrulefill](https://img.qammunity.org/2023/formulas/mathematics/high-school/8mjyvmcwlr1k100ry8mllnuaeb75p6voyx.png)
Integration rules used:
![\boxed{\begin{minipage}{5.1 cm}\underline{Integrating $e^(ax)$}\\\\$\displaystyle \int e^(ax)\:\text{d}x=(1)/(ax)e^(ax)+\text{C}$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f2xuuhqatphcowq6ossi11yrtbvg9685yx.png)
![\boxed{\begin{minipage}{5.1 cm}\underline{Integrating $\sin x$}\\\\$\displaystyle \int \sin x\:\text{d}x=-\cos x+\text{C}$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/22crpplskrd2yoqhflb6s90yp80vushh9x.png)