Answer:
![y=27/2\text{ or } 13.5](https://img.qammunity.org/2021/formulas/mathematics/college/mw0jajub1ytnpoudqsh6x5yovw23oce7p1.png)
Explanation:
If y and x have a proportional relationship, then they have the standard form:
![y=kx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/15ggalazf8cpjag5fv34y8ftpnv14l6oxo.png)
Where k is the constant of proportionality.
We know that y=9 when x=2. So, we can solve for our k. Substitute 9 for y and 2 for x. Hence:
![9=2k](https://img.qammunity.org/2021/formulas/mathematics/college/f94so5pdkqpd91lmy8uqqrko5w29kzc6fq.png)
Divide both sides by 2:
![\displaystyle k=(9)/(2)=4.5](https://img.qammunity.org/2021/formulas/mathematics/college/ag4dfkv5om8a8o0dgevn3d6ynbw8jq9lkz.png)
So, our constant of proportionality is 9/2 or 4.5.
Therefore, our equation is:
![\displaystyle y=(9)/(2)x](https://img.qammunity.org/2021/formulas/mathematics/college/eusca072snp4vuzaguh68nj2qb1b1t8vte.png)
To find y when x=3, substitute 3 for x and evaluate. Hence:
![\displaystyle y=(9)/(2)(3)](https://img.qammunity.org/2021/formulas/mathematics/college/enpf3rtxni6kocpg9n3z5npar1xsu374wg.png)
Evaluate:
![\displaystyle y=(27)/(2)=13.5](https://img.qammunity.org/2021/formulas/mathematics/college/duxp7m53gy2wkxno1yn9jockxhdsx6vtzq.png)
So, when x=3, y=27/2 or 13.5