50.8k views
3 votes
What is the product of 65(cos(14°) + i sin(14°)) and 8(cos(4°) + i sin(4°))?

a) 73(cos(18°) + i sin(18°))
b) 73(cos(56°) + i sin(56°))
c) 520(cos(18°) + i sin(18°))
d) 520(cos(56°) + i sin(56°))

2 Answers

4 votes

Answer:

c

Explanation:

edge 2020

User Mike Haboustak
by
5.9k points
6 votes

Answer:


c)\ 520(\cos(18^\circ)+\mathbf{i}\sin(18^\circ)

Explanation:

Complex Numbers in Polar Form

Let Z1 and Z2 two complex numbers in the form:


Z1 = r_1(\cos\theta_1+\mathbf{i}\sin\theta_1)


Z2 = r_2(\cos\theta_2+\mathbf{i}\sin\theta_2)

The product of Z1*Z2 is given by:


Z1*Z2 = r_1*r_2(\cos(\theta_1+\theta_2)+\mathbf{i}\sin(\theta_1+\theta_2))

The given complex number has:


r_1=65


\theta_1=14^\circ


r_1=8


\theta_1=4^\circ

Thus:


Z1*Z2 = 65*8(\cos(14^\circ+4^\circ)+\mathbf{i}\sin(14^\circ+4^\circ)


\mathbf{Z1*Z2 = 520(\cos(18^\circ)+\mathbf{i}\sin(18^\circ)}

User Mathieu Rene
by
6.0k points