224k views
11 votes
NEED THIS DONE ASAP!! Thank you!!​

NEED THIS DONE ASAP!! Thank you!!​-example-1

1 Answer

9 votes

Answer:


\overset{\frown}{WX}= 66^(\circ)

Explanation:

Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of the intercepted arc.

First, use the Inscribed Angle Theorem to calculate the measure of arc WY.


\displaystyle \angle WXY=(1)/(2) \overset{\frown}{WY}


\implies 57^(\circ)=(1)/(2) \overset{\frown}{WY}


\implies \overset{\frown}{WY}= 2 \cdot 57^(\circ)


\implies \overset{\frown}{WY}= 114^(\circ)

Assuming XY is the diameter of the circle:


\implies \overset{\frown}{WY}+ \overset{\frown}{WX}= 180^(\circ)


\implies 114^(\circ) + \overset{\frown}{WX}= 180^(\circ)


\implies \overset{\frown}{WX}= 180^(\circ) - 114^(\circ)


\implies \overset{\frown}{WX}= 66^(\circ)

User Fjordo
by
3.8k points