Answer:
7%
Explanation:
Perimeter of a rectangle
P = 2(w + l)
where:
- P = perimeter
- w = width
- l = length
Given:
- Width of rectangle = 30 cm
- Length of rectangle = 20 cm
Therefore, the perimeter of the original rectangle is:
⇒ P = 2(30 + 20)
⇒ P = 2(50)
⇒ P = 100 cm
If the width is increased by 5%:
⇒ new width = 30 × 1.05 = 31.5 cm
If the length is increased by 10%:
⇒ new length = 20 × 1.1 = 22 cm
Therefore, the new perimeter will be:
⇒ P = 2(31.5 + 22)
⇒ P = 2(53.5)
⇒ P = 107 cm
Percentage Increase
![\sf PI=(final\:value-initial\:value)/(initial\:value) * 100](https://img.qammunity.org/2023/formulas/mathematics/high-school/qj8yptdadus9a1r34h0z6ygixivslxnskm.png)
Substitute the values:
![\begin{aligned} \implies \sf Percentage\:increase & = \sf (new\:perimeter-original\:perimeter)/(original\:perimeter) * 100\\\\& = \sf (107-100)/(100) * 100\\\\& = \sf 7\%\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/37628nms0ox8niedwiztdsolupbvfw1xe3.png)