508,883 views
29 votes
29 votes
1. Find the derivative with respect to x of x +1/x from first principle.


User Leon Segal
by
3.1k points

1 Answer

18 votes
18 votes

If you mean
f(x)=x+\frac1x, then the derivative is


\displaystyle f'(x) = \lim_(h\to0) \frac{\left(x+h+\frac1{x+h}\right) - \left(x+\frac1x\right)}h \\\\ = \lim_(h\to0) \frac{(x+h)-x}h + \lim_(h\to0) \frac{\frac1{x+h} - \frac1x}h \\\\ = \lim_(h\to0) \frac hh + \lim_(h\to0) (x-(x+h))/(hx(x+h)) \\\\ = \lim_(h\to0) 1 - \lim_(h\to0) \frac h{hx(x+h)} \\\\ = 1 - \lim_(h\to0) \frac1{x(x+h)} \\\\ = \boxed{1 - \frac1{x^2}}

If you mean
f(x) = \frac{x+1}x = 1 + \frac1x, we know from above that


\displaystyle \left(\frac1x\right)' = \lim_(h\to0) \frac{\frac1{x+h}-\frac1x}h = -\frac1{x^2}

which leaves the constant term, whose derivative is


\displaystyle (1)' = \lim_(h\to0)\frac{1 - 1}h = 0

and so


f'(x) = -\frac1{x^2}

User Oxon
by
3.4k points