Answer:
P(X is less than 348) = 0.2148
Explanation:
Given that:
Sample proportion (p) = 0.3
Sample size = 1200
Let X be the random variable that obeys a binomial distribution. Then;
![X \sim Bin(n = 1200,p =0.3)](https://img.qammunity.org/2021/formulas/mathematics/college/odq2mqigwt2br9usgy4bteolxqdee0kqag.png)
The Binomial can be approximated to normal with:
![\mu = np = 1200 * 0.3 \\ \\ \mu= 360](https://img.qammunity.org/2021/formulas/mathematics/college/6ebz57ijnqxmll9j87j311dpvpxhq4xouu.png)
![\sigma = √(np(1-p) ) \\ \\ \sigma = √(1200 * (0.3)(1-0.3) ) \\ \\ \sigma = 15.875](https://img.qammunity.org/2021/formulas/mathematics/college/svwashr6g4zukyn7c2cmkf6lwczksplq98.png)
To find:
P(X< 348)
So far we are approximating a discrete Binomial distribution using the continuous normal distribution. 348 lies between 347.5 and 348.5
Normal distribution:
x = 347.5,
= 360,
= 15.875
Using the z test statistics;
![z = (x - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/hztbu6se2jljcwphlbuywbu7hk6194j7f3.png)
![z = (347.5 - 360)/(15.875)](https://img.qammunity.org/2021/formulas/mathematics/college/gdprtvlmukklqpdd6ijstmz3rkpewo9ahr.png)
![z = (-12.50)/(15.875)](https://img.qammunity.org/2021/formulas/mathematics/college/na6nyyn96b7wjfw616ht4p0q8vj4f3ewuh.png)
z = -0.7874
z ≅ - 0.79
The p-value for P(X<347.5) = P(Z < -0.79)
From the z tables;
P(X<347.5) = 0.2148
Thus;
P(X is less than 348) = 0.2148