174k views
4 votes
In ΔFGH, \text{m}\angle F = (6x-14)^{\circ}m∠F=(6x−14) ∘ , \text{m}\angle G = (4x-8)^{\circ}m∠G=(4x−8) ∘ , and \text{m}\angle H = (x+15)^{\circ}m∠H=(x+15) ∘ . Find \text{m}\angle F.M∠F.

User Dagalpin
by
4.3k points

1 Answer

6 votes

Answer:


\angle F =\bold{88^\circ}

Explanation:

Given a
\triangle FGH with the following angles:


\text{m}\angle F = (6x-14)^(\circ)


\text{m}\angle G = (4x-8)^(\circ)


\text{m}\angle H = (x+15)^(\circ)

To find:


\text{m}\angle F = ?

Solution:

Here, we can simply use the angle sum property of a triangle to find the value of
\text{m}\angle F.

As per the angle sum property of a triangle, the sum of all the interior angles a triangle is equal to
180^\circ.


\angle F + \angle G + \angle H = 180^\circ

Putting all the given values in the above equation, we get:


(6x-14)^(\circ) + (4x-8)^(\circ) + (x+15)^(\circ) = 180^\circ\\\Rightarrow 11x-7=180^\circ\\\Rightarrow 11x=180+7\\\Rightarrow 11x=187\\\Rightarrow x = \bold{17}

Putting the value of
x in
\angle F


\text{m}\angle F = (6x-14)^\circ\\\Rightarrow \text{m}\angle F = (6* 17-14)^\circ\\\Rightarrow \text{m}\angle F = \bold{88^\circ}

User Cwharris
by
5.0k points