158k views
1 vote
Prove that: (Sec A- cosec A)(1+ tan A+cot A) = tan A× sec A - cot A × cosec A

User Haphazard
by
5.2k points

1 Answer

2 votes

Answer:

Explanation:


(sec A-cosecA)(1+tanA+cotA)=tanAsecA-cotAcosecA

we take the LHS so here goes,


(sec A-cosecA)(1+tanA+cotA)=tanAsecA-cotAcosecA\\((1)/(cosA) -(1)/(sinA))(1+(sinA)/(cosA)+(cosA)/(sinA))\\\\((sinA-cosA)/(sinAcosA))((sinAcosA+sin^2A+cos^2A)/(sinAcosA))\\

since ,
sin^2A+cos^2A=1

the identity becomes,


((sinA-cosA)/(sinAcosA))((1+sinAcosA)/(sinAcosA))\\\\((sinA+sin^2AcosA-cosA-cos^2AsinA)/(sin^2Acos^2A))\\\\

now, we know,


sin^2A=1-cos^2A and
cos^2A=1-sin^2A

the identity becomes,


((sinA+(1-cos^2A)cosA-cosA-(1-sin^2A)sinA)/(sin^2Acos^2A) )\\\\


((sinA+cosA-cos^3A-cosA-sinA+sin^3A)/(sin^2Acos^2A))

sin A and cos A cancel out it becomes zero


(sin^3A-cos^3A)/(sin^2Acos^2A) \\\\

Splitting the denominator the identity becomes


(sin^3A)/(sin^2Acos^2A)-(cos^3A)/(sin^2Acos^2A) \\\\(sinA)/(cos^2A) - (cosA)/(sin^2A) \\\\(sinA)/(cosA)((1)/(cosA))-(cosA)/(sinA)((1)/(sinA))\\\\

Hence,


tanAsecA-cotAcosecA

User Pratik Shelar
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.