154k views
3 votes
Can someone show me the answer and maybe the work

Can someone show me the answer and maybe the work-example-1

1 Answer

3 votes

Answer:

Solving the expression \frac{y^2z^{\frac{1}{4}} }{(z^{\frac{1}{2}}.xy^{\frac{3}{2}})^3} we get
\mathbf{\frac{1}{y^{(5)/(2) }x^3z^{(5)/(4) }}}

Explanation:

We need to solve the expression:


\frac{y^2z^{(1)/(4)} }{(z^{(1)/(2)}.xy^{(3)/(2)})^3}

We know the exponent rule:
(a^n)^m = a^(nm)


\frac{y^2z^{(1)/(4)} }{(z^{(1)/(2)}.xy^{(3)/(2)})^3}\\\\=\frac{y^2z^{(1)/(4)} }{z^{(3)/(2)}.x^3y^{(9)/(2) }}

Now, another exponent rule says that:
(a^m)/(a^n)=a^(m-n)


=\frac{y^{2-(9)/(2)} z^{(1)/(4)-(3)/(2) } }{x^3}\\=\frac{y^{(4-9)/(2)} z^{(1-3*2)/(4) } }{x^3}\\=\frac{y^{(-5)/(2)}z^{(-5)/(4) } }{x^3}

We also know that:
a^(-m)=(1)/(a^m)

=
\frac{1}{y^{(5)/(2) }x^3z^{(5)/(4) }}

So, solving the expression \frac{y^2z^{\frac{1}{4}} }{(z^{\frac{1}{2}}.xy^{\frac{3}{2}})^3} we get
\mathbf{\frac{1}{y^{(5)/(2) }x^3z^{(5)/(4) }}}

User HugoShaka
by
4.6k points