231k views
3 votes
Please help, performance task: trigonometric identities

Please help, performance task: trigonometric identities-example-1

2 Answers

9 votes

#a

  • (1+cosx)(1-cosx)
  • 1²-cos²x
  • 1-cos²x
  • sin²x

#2

  • 1/cot²x-1/cos²x
  • tan²x-sec²x
  • -1

#c

  • sec²(90-x)[sin²x-sin⁴x]
  • csc²x[sin²x-sin⁴x]
  • 1-sin²x
  • cos²x
User Hayi Nukman
by
4.9k points
7 votes

Answer:

Trigonometric Identities used:


\sin^2 \theta + \cos^2 \theta \equiv 1


\sec \theta \equiv (1)/(\cos \theta)


\cot \theta \equiv (1)/(\tan \theta)


\sec^2 \theta \equiv 1 + \tan^2 \theta


\sin(\theta)=\cos \left((\pi)/(2)-\theta\right)

Part (a)


(1+ \cos(x))(1-\cos(x))


=1-\cos(x)+\cos(x)-\cos^2(x)


=1-\cos^2(x)


= \sin^2(x)

Part (b)


(1)/(\cot^2(x))-(1)/(\cos^2(x))


=\tan^2(x)-\sec^2(x)


=\tan^2(x)-(1 + \tan^2(x))


=\tan^2(x)-1 - \tan^2(x)


=-1

Part (c)


\sec^2\left(( \pi )/(2)-x\right) \left[\sin^2(x)-\sin^4(x) \right]


=(1)/(\cos^2\left(( \pi )/(2)-x\right)) \left[\sin^2(x)-\sin^4(x) \right]


=(1)/(\sin^2(x)) \left[\sin^2(x)-\sin^4(x) \right]


= (\sin^2(x)-\sin^4(x))/(\sin^2(x))


= (\sin^2(x))/(\sin^2(x)) - (\sin^4(x))/(\sin^2(x))


= (\sin^2(x))/(\sin^2(x)) - ((\sin^2(x))(\sin^2(x)))/(\sin^2(x))


=1- \sin^2(x)


= \cos^2(x)

User Maxim T
by
5.0k points