191k views
3 votes
What is the value of x? There is isosceles triangle. The measure of angle which is between two congruent sides is (6x+10⁰). The measures of other angles are (x+17⁰) and (4x-34⁰).

User Tertek
by
5.6k points

1 Answer

0 votes

Answer:-

x=17

step-by-step Step-by-step explanation:-


{\boxed{\quad\:\mapsto\rm Firstly\:Let's\:understand\:the\:concept:-}}

This is a isosceles triangle. As it is a triangle we can apply sum theory. we have to take the sum of given unknown polynomials as 180° .Then by solving it we can find the value of x.

Solution:-

Given angles

  • (6x+10°)
  • (x+17°)
  • (4x-34)°

According to sum theory


{\boxed{\sf The \:sum\:of\:angles=180°}}

  • Substitute the values


\qquad \quad{:}\longmapsto\tt (6x+10)+(x+17)+(4x-34)=180

  • Remove brackets


\qquad \quad{:}\longmapsto\tt 6x+10+x+17+4x-34=180

  • Together like polynomials and constants


\qquad \quad{:}\longmapsto\tt 6x+x+4x+10+17-34=180


\qquad \quad{:}\longmapsto\tt 11x-7=180

  • Interchange sides


\qquad \quad{:}\longmapsto\tt 11x=180+7


\qquad \quad{:}\longmapsto\tt 11x=187


\qquad \quad{:}\longmapsto\tt x=\cancel{(187)/(11)}

  • Simplify


\qquad \quad{:}\longmapsto\tt x=17


\therefore\sf The \:value\:of\:x\;is\:17.

User Ricksmt
by
5.1k points