Check what the transformation does for each vector in the standard basis of R² :
T (1, 0) = (5, 2)
T (0, 1) = (-4, 0)
Now compute the weights a, b and c, d such that
a T (1, 0) + b T (0, 1) = (-2, 1)
c T (1, 0) + d T (0, 1) = (-1, 1)
![\left[\begin{array}c5&-4&-2\\2&0&1\end{array}\right]\sim\left[\begin{array}cc1&0&\frac12\\\\0&1&\frac98\end{array}\right]\implies a=\frac12,b=\frac98](https://img.qammunity.org/2021/formulas/mathematics/college/iuh95d12kyx9elhwpcoxve6fsyhsw0h1zj.png)
![\left[\begin{array}cc5&-4&-1\\2&0&1\end{array}\right]\sim\left[\begin{array}c1&0&\frac12\\\\0&1&\frac78\end{array}\right]\implies c=\frac12,d=\frac78](https://img.qammunity.org/2021/formulas/mathematics/college/azr559uti6ddxzg98najeilrsrn42d202r.png)
Then the matrix A' is
![A'=\begin{bmatrix}\frac12&\frac12\\\\\frac98&\frac78\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/5l1xrz3q92fyfdj36t9uqdj59olr1s4a76.png)