75.1k views
13 votes
Simply
tan 45°. sin 30° - cot 45°/sec 60°​

2 Answers

8 votes

Answer:

0

Explanation:

Using trigonometric functions and table to substitute values,we obtain


  • 1 * \sin45 - \cfrac{ \cot(45) }{ \sec(60) }


  • \sin(30) - \cfrac{ \cfrac{\cos(45)}{ \sin45} }{ \cfrac{1}{ \cos(60) } }


  • \cfrac{1}{2} - \cfrac{ \cfrac{\cos(45)}{ \sin45} }{ \cfrac{1}{ \cos(60) } }

Rewrite 1/cos(60) as


  • \cfrac{1}{2} - \cfrac{ \cos(45) * \cos(60) }{ \sin(45) }

Rewriting again:


  • \cfrac{1}{2} - \cfrac{ \cancel{\cfrac{√(2)}{2} }* \cfrac{1}{2} }{ \cancel{\cfrac{ √(2) }{2}} }


  • \cfrac{1}{2} - \cfrac{1}{2}

[LCM of 2 is 2]


  • \cfrac{1 - 1}{2} = \boxed0
User Chuck Kollars
by
3.2k points
6 votes

If we want to write the given four numbers in another form, we can write it like this;


tan45=sin45/cos45=1


sin30=sin((\pi )/(2)-60 )=cos60=(1)/(2)


cot45=cos45/sin45=1


sec60=1/cos60=(1)/(1/2) =2

Now let's rewrite the given expression and get the result.


(tan45.sin30)-(cot45/sec60)=(1.(1)/(2))-((1)/(2) )=0

User Hua
by
3.6k points