188k views
22 votes
NEED THIS DONE ASAP!! Thank you!!

Given a circle with are 225pi cm^2.
What is the length of an arc with a central angle of 30°? Show your work.

NEED THIS DONE ASAP!! Thank you!! Given a circle with are 225pi cm^2. What is the-example-1

2 Answers

5 votes


\sf{\qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~

Area of circle is :


\qquad \sf  \dashrightarrow \: a = 225\pi \: \: cm {}^(2)


\qquad \sf  \dashrightarrow \: \pi{r}^(2) = 225 \pi


\qquad \sf  \dashrightarrow \: {r}^(2) = 225


\qquad \sf  \dashrightarrow \:r = √(225)


\qquad \sf  \dashrightarrow \:r = 15

Now, let's find the arc of circle which makes an angle 30° at centre.


\qquad \sf  \dashrightarrow \: ( \theta)/(360) (2 \pi r)


\qquad \sf  \dashrightarrow \: (30)/(360) (2 \sdot\pi \sdot15)


\qquad \sf  \dashrightarrow \: (30 \pi)/(12)


\qquad \sf  \dashrightarrow \:5/2 \pi

So, the length of required arc is 2.5 pi or 7.85 cm

User Satya Mallick
by
6.4k points
11 votes

Answer:

7.85 cm (2 d.p.)

Explanation:

Step 1: Find the radius


\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}

Given:

  • Area = 225π cm²

Substitute the given value into the formula and solve for r:


\implies 225 \pi= \pi r^2


\implies r^2=225


\implies r=√(225)


\implies r=15 \:\: \sf cm

Step 2: Find the arc length


\textsf{Arc length}=2 \pi r\left((\theta)/(360^(\circ))\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}

Given:


  • \theta = 30°
  • r = 15 cm (from step 1)

Substitute the given values into the formula and solve for arc length:


\implies \textsf{Arc length}=2 \pi (15) \left((30^(\circ))/(360^(\circ))\right)


\implies \textsf{Arc length}=(5)/(2)\pi \:\: \sf cm


\implies \textsf{Arc length}=7.85 \:\: \sf cm\:\:(2\:d.p.)

User Seth Spearman
by
6.3k points