Answer: θ = 97.8°
Step-by-step explanation: Three forces in equilibrium form a triangle. To determine the angle, we can use Law of Cosines, which relates the side of a triangle to the cosine of one of its angles.
The relationship is given as
![a^(2)=b^(2)+c^(2)-2bccos\theta](https://img.qammunity.org/2021/formulas/physics/college/tdtfe6ew9hjgnij215bmt46uz5emng9zxs.png)
For the three forces, cosine law is
![210^(2)=114^(2)+120^(2)-2(114)(120)cos\theta](https://img.qammunity.org/2021/formulas/physics/college/94odlo2ja70ek37xec93tk4fd2blwm4jvh.png)
![44100=12996+14400-27360cos\theta](https://img.qammunity.org/2021/formulas/physics/college/i3e3zopm9b9xdha12bj39thto4c1s3wwcc.png)
![27360cos\theta=-3708](https://img.qammunity.org/2021/formulas/physics/college/brqe6xacxpt9visquljhljcntig9ff0hi4.png)
![cos\theta=-0.1355](https://img.qammunity.org/2021/formulas/physics/college/h3fji96isx1jtg2wti11cinfpajvcuurzz.png)
![\theta = cos^(-1)(-0.1355)](https://img.qammunity.org/2021/formulas/physics/college/s70dofmsjlan4bbwgbzoh66vbud2y5mb1s.png)
97.8°
The angle between forces 114lb and 120lb is 97.8°