Answer:
![\textsf{A)} \quad y-7=-(6)/(11)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yhrj4gf023d55wumafsamv9g3yq2ojf75d.png)
Explanation:
Step 1: Find the slope
Define the points:
![\textsf{let}\:(x_1,y_1)=(-7,7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rhuzurc4qu3nlsdc464mqyd2pviprrqg04.png)
![\textsf{let}\:(x_2,y_2)=(4,1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bbue5x3y23ea51tegglkkra8u2w58pdbsl.png)
Use the slope formula to find the slope:
![\textsf{slope}\:(m)=(y_2-y_1)/(x_2-x_1)=(1-7)/(4-(-7))=-(6)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rv5junp4e0ouivkgg0ze5xk4wivimi70zx.png)
Step 2: Find the equation
Use the found slope from step 1 together with one of the given points in the point-slope form of a linear equation:
![\implies y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3o566a3lb1rp5vrz6uu9ltui840a7pirsx.png)
![\implies y-7=-(6)/(11)(x-(-7))](https://img.qammunity.org/2023/formulas/mathematics/high-school/iz89m445lti5n7g8pgozdzguvlgdxcwo70.png)
![\implies y-7=-(6)/(11)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yqk5nqjo0wcrzmi7mekbgg5qdlhm3quf0l.png)
Conclusion
Therefore, the equation of the line that passes through the points (-7, 7) and (4, 1) is:
![y-7=-(6)/(11)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/11cujnh3n6qgn05q17rw5b8uzch1tueaos.png)