Given:
The equation of a line is
![y=(3)/(4)x-11](https://img.qammunity.org/2021/formulas/mathematics/high-school/jmtbxofya03ooaj0gn2c9g11vhsh8wwq7z.png)
Line v passes through point (6,6) and it is perpendicular to the given line.
Line w passes through point (-6,10) and it is parallel to the line v.
To find:
The equation in slope intercept form of line w.
Solution:
Slope intercept form of a line is
...(i)
where, m is slope and b is y-intercept.
We have,
...(ii)
On comparing (i) and (ii), we get
![m=(3)/(4)](https://img.qammunity.org/2021/formulas/physics/college/mlz8aic1uxa5ypqzhqvb32v28jrcjcowvc.png)
So, slope of given line is
.
Product of slopes of two perpendicular lines is -1.
![m_1* m_2=-1](https://img.qammunity.org/2021/formulas/mathematics/college/70emitg2ph8bohvurr59ncv16w2i8bu4oi.png)
![(3)/(4)* m_2=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/5d24s1klcnzruh0evb6q1u3ezlcbcvthr8.png)
![m_2=-(4)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tw6a8nk21nfr4tc3e4pdtl5u0gpfspj33r.png)
Line w is perpendicular to the given line. So, the slope of line w is
.
Slopes of parallel line are equal.
Line v is parallel to line w. So, slope of line v is also
.
Slope of line v is
and it passes thorugh (-6,10). So, the equation of line v is
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
where, m is slope.
![y-10=-(4)/(3)(x-(-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/89996cv64yejadqh46jqr9rdf3w17p9xah.png)
![y-10=-(4)/(3)(x+6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dgi78d4y2613d1h0spvjzzane8u6i65gs4.png)
![y-10=-(4)/(3)x-(4)/(3)(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hn821jpahq0ymyrzgy4teilzsl5nkihpdr.png)
![y-10=-(4)/(3)x-8](https://img.qammunity.org/2021/formulas/mathematics/high-school/nftn0mtd9lwoi0rca83e5wxn1k5o4myqmb.png)
Adding 10 on both sides, we get
![y=-(4)/(3)x-8+10](https://img.qammunity.org/2021/formulas/mathematics/high-school/lbm73qwcfeo7jt32p5qzzpy5zcr6f4k9ol.png)
![y=-(4)/(3)x+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/seabou2jh52s0v2g7krwks5iaeim8bngw3.png)
Therefore the equation of line v is
.