Answer:
The location of the center of gravity of the fourth mass is
.
Step-by-step explanation:
Vectorially speaking, the center of gravity with respect to origin (
), measured in meters, is defined by the following formula:
(1)
Where:
,
,
,
- Masses of the objects, measured in kilograms.
,
,
,
- Location of the center of mass of each object with respect to origin, measured in meters.
If we know that
,
,
,
,
,
,
and
, then the equation is reduced into this:
![(0,0) = ((6\,kg)\cdot (0,0)\,[m]+(1.5\,kg)\cdot (0,4.1)\,[m]+(4.0\,kg)\cdot (1.9,0)\,[m]+(7.9\,kg)\cdot \vec r_(4))/(6\,kg+1.5\,kg+4\,kg+7.9\,kg)](https://img.qammunity.org/2021/formulas/physics/college/uyy0hp0m4544s6u26ha8ww8kreyopvs9rc.png)
![(6\,kg)\cdot (0,0)\,[m]+(1.5\,kg)\cdot (0,4.1)\,[m]+(4\,kg)\cdot (1.9,0)\,[m]+(7.9\,kg)\cdot \vec r_(4) = (0,0)\,[kg\cdot m]](https://img.qammunity.org/2021/formulas/physics/college/tvrh8a2sq7jnmu925bss8vlnpjsdhlwtbk.png)
![(7.9\,kg)\cdot \vec r_(4) = -(6\,kg)\cdot (0,0)\,[m]-(1.5\,kg)\cdot (0,4.1)\,[m]-(4\,kg)\cdot (1.9,0)\,[m]](https://img.qammunity.org/2021/formulas/physics/college/3j13ilmgocv80r47t1eysrt4inq3g5l2d9.png)
![\vec r_(4) = -0.759\cdot (0,0)\,[m]-0.190\cdot (0,4.1)\,[m]-0.506\cdot (1.9,0)\,[m]](https://img.qammunity.org/2021/formulas/physics/college/urt1yn7594nebxz0qen258noq7ii5c58z9.png)
![\vec r_(4) = (0, 0)\,[m] -(0, 0.779)\,[m]-(0.961,0)\,[m]](https://img.qammunity.org/2021/formulas/physics/college/omnb8hs4n442wh7tvq7n64322lkuj6jg0u.png)
![\vec r_(4) = (-0.961\,m,-0.779\,m)](https://img.qammunity.org/2021/formulas/physics/college/eugxta62cyeri25qo3vnrlu9jjl9q43yso.png)
The location of the center of gravity of the fourth mass is
.