Answer:
0.0157
Explanation:
From the information given:
The sample size = 70
The expected no. of days of year that are birthday of exactly 4 people is:
![P = \bigg [ (1)/(365) \bigg]^4](https://img.qammunity.org/2021/formulas/mathematics/college/6o61ljuz0xsn8yf0qxq892euaeqnp6u53o.png)
The expected number of days with 4 birthdays =

![\sum \limits ^(365)_(i=1) E(x_i) = 365 * \bigg[ \ ^(70)C_(4) * ( (1)/(365))^4 ( 1 - (1)/(365))^(70-4) \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/p2khgtw63514y40uyd58zyapd9bnmarx6f.png)
![\sum \limits ^(365)_(i=1) E(x_i) = 365 * \bigg[ \ (70!)/(4!(70-4)!) * ( (1)/(365))^4 ( 1 - (1)/(365))^(66) \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/gvnrtjyfx4vo0kvqwupkgpynyb639lln85.png)
![\sum \limits ^(365)_(i=1) E(x_i) = 365 * \bigg[ \ 916895 * 5.6342 * 10^(-11) * 0.8343768898 \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/urank7clw6zh1cftcn6q8nn1pkir6ujn7f.png)
= 0.0157
Therefore, the required probability = 0.0157