144k views
4 votes
How to solve this with steps? its Calculus-3

How to solve this with steps? its Calculus-3-example-1
User Eddiec
by
5.7k points

1 Answer

4 votes

Answer:


\mathbf{v}(\pi/4)=-3\mathbf{i}+3\mathbf{j}+3 \mathbf{k}

Explanation:

Instantaneous Velocity

Given r(t) as the vector function of the position for time t, the instantaneous velocity is computed as:


\mathbf{v}=\frac{d\mathbf{r}}{dt}=\mathbf{r}'(t)

We are given:


\mathbf{r}=\sin^2(3t)\mathbf{i}+3t\mathbf{j}-\cos^2(3t)\mathbf{k}

Thus:


\mathbf{v}(t)=\mathbf{r}'(t)=[\sin^2(3t)\mathbf{i}+3t\mathbf{j}-\cos^2(3t)\mathbf{k}]'

Computing the derivative:


\mathbf{v}(t)=2\sin(3t)\cos(3t)(3)\mathbf{i}+3\mathbf{j}+2\cos(3t)\sin(3t)(3)\mathbf{k}


\mathbf{v}(t)=6\sin(3t)\cos(3t)\mathbf{i}+3\mathbf{j}+6\cos(3t)\sin(3t)\mathbf{k}

Evaluating for t=π/4:


\mathbf{v}(\pi/4)=6\sin(3\pi/4)\cos(3\pi/4)\mathbf{i}+3\mathbf{j}+6\cos(3\pi/4)\sin(3\pi/4) \mathbf{k}


\mathbf{v}(\pi/4)=6(√(2)/2)(-√(2)/2)\mathbf{i}+3\mathbf{j}+6(-√(2)/2))(√(2)/2)) \mathbf{k}


\mathbf{v}(\pi/4)=-3\mathbf{i}+3\mathbf{j}-3 \mathbf{k}

User Evan Salter
by
5.8k points