144k views
4 votes
How to solve this with steps? its Calculus-3

How to solve this with steps? its Calculus-3-example-1
User Eddiec
by
8.7k points

1 Answer

4 votes

Answer:


\mathbf{v}(\pi/4)=-3\mathbf{i}+3\mathbf{j}+3 \mathbf{k}

Explanation:

Instantaneous Velocity

Given r(t) as the vector function of the position for time t, the instantaneous velocity is computed as:


\mathbf{v}=\frac{d\mathbf{r}}{dt}=\mathbf{r}'(t)

We are given:


\mathbf{r}=\sin^2(3t)\mathbf{i}+3t\mathbf{j}-\cos^2(3t)\mathbf{k}

Thus:


\mathbf{v}(t)=\mathbf{r}'(t)=[\sin^2(3t)\mathbf{i}+3t\mathbf{j}-\cos^2(3t)\mathbf{k}]'

Computing the derivative:


\mathbf{v}(t)=2\sin(3t)\cos(3t)(3)\mathbf{i}+3\mathbf{j}+2\cos(3t)\sin(3t)(3)\mathbf{k}


\mathbf{v}(t)=6\sin(3t)\cos(3t)\mathbf{i}+3\mathbf{j}+6\cos(3t)\sin(3t)\mathbf{k}

Evaluating for t=π/4:


\mathbf{v}(\pi/4)=6\sin(3\pi/4)\cos(3\pi/4)\mathbf{i}+3\mathbf{j}+6\cos(3\pi/4)\sin(3\pi/4) \mathbf{k}


\mathbf{v}(\pi/4)=6(√(2)/2)(-√(2)/2)\mathbf{i}+3\mathbf{j}+6(-√(2)/2))(√(2)/2)) \mathbf{k}


\mathbf{v}(\pi/4)=-3\mathbf{i}+3\mathbf{j}-3 \mathbf{k}

User Evan Salter
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories