101k views
3 votes
Solve y=f(x) for x. Then find the input when the output is -3.

f(x) = (x-5)^3 -1
x = __
The input is __ when the output is -3.

User Paulina
by
7.7k points

1 Answer

5 votes

Answer:

Please check the explanation

Explanation:

Given the function


f\left(x\right)\:=\:\left(x-5\right)^3-1

Given that the output = -3

i.e. y = -3

now substituting the value y=-3 and solve for x to determine the input 'x'


\:\:y=\:\left(x-5\right)^3-1


-3\:=\:\left(x-5\right)^3-1\:\:\:

switch sides


\left(x-5\right)^3-1=-3

Add 1 to both sides


\left(x-5\right)^3-1+1=-3+1


\left(x-5\right)^3=-2


\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}(-1-√(3)i)/(2),\:\sqrt[3]{f\left(a\right)}(-1+√(3)i)/(2)

Thus, the input values are:


x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{(2)/(3)}\right)}{2}-i\frac{\sqrt[3]{2}√(3)}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{(2)/(3)}\right)}{2}+i\frac{\sqrt[3]{2}√(3)}{2}

And the real input is:


x=-\sqrt[3]{2}+5


  • x=3.74
User TMSCH
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories