-------------------------------------------------------------------------------------------------------------
Answer:
![\textsf{ab} > \textsf{0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l2dg3ncrq3yuzfzfe6ys1ji83b63mfz1m4.png)
-------------------------------------------------------------------------------------------------------------
Given:
![\textsf{a} > \textsf{0 and b} > \textsf{0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9l0wemd0sfrtw008yk1lqiht41w3zvd4bt.png)
Find:
![\textsf{ab } \_\_\_ \textsf{ 0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n36rlzj9gfhaq8lvcr0e192whgrpl6ygpm.png)
Solution: Since we know both a and b are positive this means that if they are multiplied against each other they would produce another positive. Therefore, this would cause the statement to be ab > 0.