2.1k views
0 votes
Evaluate integral (1/4+x^2) dx​

User PYA
by
4.9k points

1 Answer

10 votes


\sf{\qquad\qquad\huge\underline{{\sf Answer}}}

We know :


\qquad \dashrightarrow \: \displaystyle \sf {\int }^{}x {}^(n) \: dx = \frac{{x}^(n + 1)}{n + 1} + c

Now, Let's evaluate ~


\qquad \dashrightarrow \: \displaystyle \sf {\int }^{} \bigg( (1)/(4) + {x}^(2) \bigg)dx


\qquad \dashrightarrow \: \displaystyle \sf {\int }^{} \bigg( (1)/(4) {x}^(0) + {x}^(2) \bigg)dx


\qquad \dashrightarrow \: \displaystyle \sf (1)/(4) \frac{x {}^(0 + 1) }{1} + \frac{{x}^(2 +1 ) }{2 + 1} + c


\qquad \dashrightarrow \: \displaystyle \sf (1)/(4) {x {}^{} }{} + \frac{{x}^(3) }{3} + c

[ note c is constant added, because the that is indefinite integral ]

That's the answer~ ask me if you have doubts

User Michael Malov
by
6.0k points