142k views
2 votes
Multiply the polynomials. (3x^2-4x)(2x^3+3x-1)

Multiply the polynomials. (3x^2-4x)(2x^3+3x-1)-example-1

1 Answer

3 votes

Answer:

6x^5 - 8x^4 + 9x^3 - 15x^2 + 4x

Explanation:

(3x^2 - 4x)(2x^3 + 3x - 1)

Multiply the second parentheses by each term from the first parentheses

3x^2(2x^3 + 3x - 1) -4x(2x^3 + 3x - 1)

Distribute 3x^2 through the first parentheses

6x^5 + 9x^3 - 3x^2

then distribute -4x through the second parentheses

-8x^4 -12x^2 + 4x

put them together

6x^5 + 9x^3 - 3x^2 - 8x^4 -12x^2 + 4x

combine the bolded like terms above

6x^5 + 9x^3 - 15x^2 - 8x^4 + 4x

use the commutative property to reorder the terms.

6x^5 - 8x^4 + 9x^3 - 15x^2 +4x

User Davidsun
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories