124k views
6 votes
Wich of the following is the complete list of roots for the polynomial function f(x) = (x²+2x-15) (x²+8x+17)?

-5, 3
-5, 3, -4 + i, -4-i
-5, 3, -4+1, 4+i
-4+i,-4-i

1 Answer

3 votes

Answer:


-5, \quad 3, \quad -4+i,\quad -4-i

Explanation:

Roots occur when f(x) = 0


\implies (x^2+2x-15)(x^2+8x+17)=0

First trinomial


\implies (x^2+2x-15)=0


\implies x^2+5x-3x-15=0


\implies x(x+5)-3(x+5)=0


\implies (x-3)(x+5)=0

Therefore, roots are 3 and -5

Second trinomial

The second trinomial cannot be factored, so solve using the quadratic formula:


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Given:
(x^2+8x+17)=0

Therefore: a = 1, b = 8 and c = 17


\implies x=(-8 \pm √(8^2-4(1)(17)))/(2(1))


\implies x=(-8 \pm √(-4))/(2)


\implies x=(-8 \pm √(4)√(-1))/(2)


\implies x=(-8 \pm 2i)/(2)


\implies x=-4 \pm i

So the roots of the second trinomial are -4 + i and -4 - i

Therefore, the complete list of roots for the given polynomial function are:


-5, \quad 3, \quad -4+i,\quad -4-i

User Dwalldorf
by
5.1k points