2.7k views
2 votes
Find the volume of a cylinder that has a diameter of 7 and a height of 8.

28 Pi
392 Pi
448 Pi
98 Pi

2 Answers

8 votes

We know , the volume of a cylinder is given by the formula – πh, where r is the radius of the cylinder and h is the height.

  • Diameter - 7
  • Height - 8
  • radius = 7/2

Therefore, putting the values, we get,


\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: {r}^(2)h


\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi * \: \bigg((7)/(2) \bigg)^(2) \: * \: 8 \\


\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: * \: (7)/(2) \: * \: (7)/(2) \: * \: 8 \\


\Large \mathcal \purple {Volume } \large\red\implies \tt \large \:\pi \: * \: (7)/(2) \: * \: (7)/( \cancel2) \: * \: \cancel{8} \: ^( \orange4) \\


\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: * \: (7)/( \cancel2) \: * \: {7} \: * \: \cancel4 \: ^( \orange2) \\


\\ \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: * \: 7 \: * \: 7 \: * \: 2


\Large \mathcal \purple {Volume }\ \large\red\implies \tt \large \:\pi \: * \: 49 \: * \: 2


\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:98 \:\pi

Hence , the volume of cylinder is 98 pi

User Jack Franklin
by
3.2k points
2 votes

Required solution :

  • Diameter (d) = 7
  • Height = 8

Therefore,

  • Radius (r) = d / 2
  • Radius (r) = 7/2

We know that :

  • V = πr^2h

Substituting the values :

>> V = π × (7 / 2)^2 × 8

>> V = π × (49 / 4) × 8

>> V = π × 49 × 2

>> V = 98π

Henceforth,

  • 98 pi is the answer.

User Codium
by
3.5k points